Extensions 1→N→G→Q→1 with N=D4 and Q=C23

Direct product G=NxQ with N=D4 and Q=C23
dρLabelID
D4xC2332D4xC2^364,261

Semidirect products G=N:Q with N=D4 and Q=C23
extensionφ:Q→Out NdρLabelID
D4:1C23 = C22xD8φ: C23/C22C2 ⊆ Out D432D4:1C2^364,250
D4:2C23 = C2xC8:C22φ: C23/C22C2 ⊆ Out D416D4:2C2^364,254
D4:3C23 = C22xC4oD4φ: trivial image32D4:3C2^364,263
D4:4C23 = C2x2+ 1+4φ: trivial image16D4:4C2^364,264

Non-split extensions G=N.Q with N=D4 and Q=C23
extensionφ:Q→Out NdρLabelID
D4.1C23 = C22xSD16φ: C23/C22C2 ⊆ Out D432D4.1C2^364,251
D4.2C23 = C2xC4oD8φ: C23/C22C2 ⊆ Out D432D4.2C2^364,253
D4.3C23 = C2xC8.C22φ: C23/C22C2 ⊆ Out D432D4.3C2^364,255
D4.4C23 = D8:C22φ: C23/C22C2 ⊆ Out D4164D4.4C2^364,256
D4.5C23 = D4oD8φ: C23/C22C2 ⊆ Out D4164+D4.5C2^364,257
D4.6C23 = D4oSD16φ: C23/C22C2 ⊆ Out D4164D4.6C2^364,258
D4.7C23 = Q8oD8φ: C23/C22C2 ⊆ Out D4324-D4.7C2^364,259
D4.8C23 = C2x2- 1+4φ: trivial image32D4.8C2^364,265
D4.9C23 = C2.C25φ: trivial image164D4.9C2^364,266

׿
x
:
Z
F
o
wr
Q
<